Copied to
clipboard

G = C2×C927C3order 486 = 2·35

Direct product of C2 and C927C3

direct product, metabelian, nilpotent (class 2), monomial, 3-elementary

Aliases: C2×C927C3, C9220C6, C1813- 1+2, C9⋊C98C6, (C9×C18)⋊7C3, C32⋊C9.19C6, C6.8(C9○He3), C33.10(C3×C6), (C3×C18).9C32, (C3×C6).26C33, (C32×C6).9C32, C94(C2×3- 1+2), C32.30(C32×C6), C6.8(C3×3- 1+2), C3.8(C6×3- 1+2), (C6×3- 1+2).5C3, (C3×3- 1+2).8C6, (C2×C9⋊C9)⋊5C3, (C3×C9).26(C3×C6), C3.8(C2×C9○He3), (C2×C32⋊C9).10C3, SmallGroup(486,202)

Series: Derived Chief Lower central Upper central

C1C32 — C2×C927C3
C1C3C32C3×C9C92C927C3 — C2×C927C3
C1C32 — C2×C927C3
C1C3×C6 — C2×C927C3

Generators and relations for C2×C927C3
 G = < a,b,c,d | a2=b9=c9=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc6, dcd-1=b6c >

Subgroups: 216 in 120 conjugacy classes, 78 normal (10 characteristic)
C1, C2, C3, C3, C6, C6, C9, C9, C32, C32, C18, C18, C3×C6, C3×C6, C3×C9, 3- 1+2, C33, C3×C18, C2×3- 1+2, C32×C6, C92, C32⋊C9, C9⋊C9, C3×3- 1+2, C9×C18, C2×C32⋊C9, C2×C9⋊C9, C6×3- 1+2, C927C3, C2×C927C3
Quotients: C1, C2, C3, C6, C32, C3×C6, 3- 1+2, C33, C2×3- 1+2, C32×C6, C3×3- 1+2, C9○He3, C6×3- 1+2, C2×C9○He3, C927C3, C2×C927C3

Smallest permutation representation of C2×C927C3
On 162 points
Generators in S162
(1 143)(2 144)(3 136)(4 137)(5 138)(6 139)(7 140)(8 141)(9 142)(10 91)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 100)(20 101)(21 102)(22 103)(23 104)(24 105)(25 106)(26 107)(27 108)(28 88)(29 89)(30 90)(31 82)(32 83)(33 84)(34 85)(35 86)(36 87)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 115)(56 116)(57 117)(58 109)(59 110)(60 111)(61 112)(62 113)(63 114)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(1 116 89 80 25 41 53 12 71)(2 117 90 81 26 42 54 13 72)(3 109 82 73 27 43 46 14 64)(4 110 83 74 19 44 47 15 65)(5 111 84 75 20 45 48 16 66)(6 112 85 76 21 37 49 17 67)(7 113 86 77 22 38 50 18 68)(8 114 87 78 23 39 51 10 69)(9 115 88 79 24 40 52 11 70)(28 160 105 121 133 92 151 142 55)(29 161 106 122 134 93 152 143 56)(30 162 107 123 135 94 153 144 57)(31 154 108 124 127 95 145 136 58)(32 155 100 125 128 96 146 137 59)(33 156 101 126 129 97 147 138 60)(34 157 102 118 130 98 148 139 61)(35 158 103 119 131 99 149 140 62)(36 159 104 120 132 91 150 141 63)
(2 81 54)(3 46 73)(5 75 48)(6 49 76)(8 78 51)(9 52 79)(10 117 20)(11 27 112)(12 15 18)(13 111 23)(14 21 115)(16 114 26)(17 24 109)(19 22 25)(28 148 124)(29 35 32)(30 120 147)(31 151 118)(33 123 150)(34 145 121)(36 126 153)(37 82 70)(38 44 41)(39 66 90)(40 85 64)(42 69 84)(43 88 67)(45 72 87)(55 95 102)(56 59 62)(57 101 91)(58 98 105)(60 104 94)(61 92 108)(63 107 97)(65 71 68)(83 89 86)(93 96 99)(100 103 106)(110 113 116)(119 125 122)(127 154 136)(129 138 156)(130 157 139)(132 141 159)(133 160 142)(135 144 162)(146 152 149)

G:=sub<Sym(162)| (1,143)(2,144)(3,136)(4,137)(5,138)(6,139)(7,140)(8,141)(9,142)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,88)(29,89)(30,90)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,115)(56,116)(57,117)(58,109)(59,110)(60,111)(61,112)(62,113)(63,114)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,116,89,80,25,41,53,12,71)(2,117,90,81,26,42,54,13,72)(3,109,82,73,27,43,46,14,64)(4,110,83,74,19,44,47,15,65)(5,111,84,75,20,45,48,16,66)(6,112,85,76,21,37,49,17,67)(7,113,86,77,22,38,50,18,68)(8,114,87,78,23,39,51,10,69)(9,115,88,79,24,40,52,11,70)(28,160,105,121,133,92,151,142,55)(29,161,106,122,134,93,152,143,56)(30,162,107,123,135,94,153,144,57)(31,154,108,124,127,95,145,136,58)(32,155,100,125,128,96,146,137,59)(33,156,101,126,129,97,147,138,60)(34,157,102,118,130,98,148,139,61)(35,158,103,119,131,99,149,140,62)(36,159,104,120,132,91,150,141,63), (2,81,54)(3,46,73)(5,75,48)(6,49,76)(8,78,51)(9,52,79)(10,117,20)(11,27,112)(12,15,18)(13,111,23)(14,21,115)(16,114,26)(17,24,109)(19,22,25)(28,148,124)(29,35,32)(30,120,147)(31,151,118)(33,123,150)(34,145,121)(36,126,153)(37,82,70)(38,44,41)(39,66,90)(40,85,64)(42,69,84)(43,88,67)(45,72,87)(55,95,102)(56,59,62)(57,101,91)(58,98,105)(60,104,94)(61,92,108)(63,107,97)(65,71,68)(83,89,86)(93,96,99)(100,103,106)(110,113,116)(119,125,122)(127,154,136)(129,138,156)(130,157,139)(132,141,159)(133,160,142)(135,144,162)(146,152,149)>;

G:=Group( (1,143)(2,144)(3,136)(4,137)(5,138)(6,139)(7,140)(8,141)(9,142)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,88)(29,89)(30,90)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,115)(56,116)(57,117)(58,109)(59,110)(60,111)(61,112)(62,113)(63,114)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,116,89,80,25,41,53,12,71)(2,117,90,81,26,42,54,13,72)(3,109,82,73,27,43,46,14,64)(4,110,83,74,19,44,47,15,65)(5,111,84,75,20,45,48,16,66)(6,112,85,76,21,37,49,17,67)(7,113,86,77,22,38,50,18,68)(8,114,87,78,23,39,51,10,69)(9,115,88,79,24,40,52,11,70)(28,160,105,121,133,92,151,142,55)(29,161,106,122,134,93,152,143,56)(30,162,107,123,135,94,153,144,57)(31,154,108,124,127,95,145,136,58)(32,155,100,125,128,96,146,137,59)(33,156,101,126,129,97,147,138,60)(34,157,102,118,130,98,148,139,61)(35,158,103,119,131,99,149,140,62)(36,159,104,120,132,91,150,141,63), (2,81,54)(3,46,73)(5,75,48)(6,49,76)(8,78,51)(9,52,79)(10,117,20)(11,27,112)(12,15,18)(13,111,23)(14,21,115)(16,114,26)(17,24,109)(19,22,25)(28,148,124)(29,35,32)(30,120,147)(31,151,118)(33,123,150)(34,145,121)(36,126,153)(37,82,70)(38,44,41)(39,66,90)(40,85,64)(42,69,84)(43,88,67)(45,72,87)(55,95,102)(56,59,62)(57,101,91)(58,98,105)(60,104,94)(61,92,108)(63,107,97)(65,71,68)(83,89,86)(93,96,99)(100,103,106)(110,113,116)(119,125,122)(127,154,136)(129,138,156)(130,157,139)(132,141,159)(133,160,142)(135,144,162)(146,152,149) );

G=PermutationGroup([[(1,143),(2,144),(3,136),(4,137),(5,138),(6,139),(7,140),(8,141),(9,142),(10,91),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,100),(20,101),(21,102),(22,103),(23,104),(24,105),(25,106),(26,107),(27,108),(28,88),(29,89),(30,90),(31,82),(32,83),(33,84),(34,85),(35,86),(36,87),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,115),(56,116),(57,117),(58,109),(59,110),(60,111),(61,112),(62,113),(63,114),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(1,116,89,80,25,41,53,12,71),(2,117,90,81,26,42,54,13,72),(3,109,82,73,27,43,46,14,64),(4,110,83,74,19,44,47,15,65),(5,111,84,75,20,45,48,16,66),(6,112,85,76,21,37,49,17,67),(7,113,86,77,22,38,50,18,68),(8,114,87,78,23,39,51,10,69),(9,115,88,79,24,40,52,11,70),(28,160,105,121,133,92,151,142,55),(29,161,106,122,134,93,152,143,56),(30,162,107,123,135,94,153,144,57),(31,154,108,124,127,95,145,136,58),(32,155,100,125,128,96,146,137,59),(33,156,101,126,129,97,147,138,60),(34,157,102,118,130,98,148,139,61),(35,158,103,119,131,99,149,140,62),(36,159,104,120,132,91,150,141,63)], [(2,81,54),(3,46,73),(5,75,48),(6,49,76),(8,78,51),(9,52,79),(10,117,20),(11,27,112),(12,15,18),(13,111,23),(14,21,115),(16,114,26),(17,24,109),(19,22,25),(28,148,124),(29,35,32),(30,120,147),(31,151,118),(33,123,150),(34,145,121),(36,126,153),(37,82,70),(38,44,41),(39,66,90),(40,85,64),(42,69,84),(43,88,67),(45,72,87),(55,95,102),(56,59,62),(57,101,91),(58,98,105),(60,104,94),(61,92,108),(63,107,97),(65,71,68),(83,89,86),(93,96,99),(100,103,106),(110,113,116),(119,125,122),(127,154,136),(129,138,156),(130,157,139),(132,141,159),(133,160,142),(135,144,162),(146,152,149)]])

102 conjugacy classes

class 1  2 3A···3H3I3J6A···6H6I6J9A···9X9Y···9AN18A···18X18Y···18AN
order123···3336···6669···99···918···1818···18
size111···1991···1993···39···93···39···9

102 irreducible representations

dim11111111113333
type++
imageC1C2C3C3C3C3C6C6C6C63- 1+2C2×3- 1+2C9○He3C2×C9○He3
kernelC2×C927C3C927C3C9×C18C2×C32⋊C9C2×C9⋊C9C6×3- 1+2C92C32⋊C9C9⋊C9C3×3- 1+2C18C9C6C3
# reps11241642416412121212

Matrix representation of C2×C927C3 in GL6(𝔽19)

1800000
0180000
0018000
000100
000010
000001
,
600000
060000
006000
0000110
0000011
000100
,
010000
001000
100000
000010
000001
000700
,
100000
0110000
007000
000100
0000110
000007

G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,1,0,0,0,11,0,0,0,0,0,0,11,0],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,7,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,7] >;

C2×C927C3 in GAP, Magma, Sage, TeX

C_2\times C_9^2\rtimes_7C_3
% in TeX

G:=Group("C2xC9^2:7C3");
// GroupNames label

G:=SmallGroup(486,202);
// by ID

G=gap.SmallGroup(486,202);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,548,500,2169,93]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^9=c^9=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^6,d*c*d^-1=b^6*c>;
// generators/relations

׿
×
𝔽